
AD-AG97 231 MARYLAND UNIV C OLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2
EVALUATI NG A DATA A BSTRACTION TESTING SYSTEM BASED ON FORMAL SP--ETCIU3
DEC AG P k MCMULLIN. .J D GANNON F49620 RI C 1101

UNCLASSIFIlED AFOSR-TR-A1-0264 "L

I IlfIfIlfl MENEMh

Hi tiI.c-L2 111125
13=

11111 111I122

Mr~' f~l -< 3b

0 2

LEVEL
0Evaluating a Data Abstraction Testing System

:Based on Formal Specifications

Paul R. Mc'ullin

John D. Gannon DTIC
ELECTE .7
APR 0 2 1981-;i

Department of Computer Science

University of MaryLand
College Park, Maryland F

Abstract

A compiLer-based specification and testing
system for defining data types has been developed.
The system, DAISTS, includes formal algebraic
specifications and statement and expression test
coverage monitors. This paper descibes our initial
attempt to evaluate the effectiveness of the system
in helping users produce software containing fewer
errors. In an exploratory study, subjects without
prior experience with DAISTS were encouraged by the
system to develop effective sets of test cases for
their implementations. Furthermore, an analysis of
the errors remaining in the implementations provided
valuabLe hints about additional useful testing
metrics.,

Key Words and .SOhtases': data type, experiment,
specification, testing.

81 4 2 139

I

AIR FORC~E OFIC"S OF S-,ZEXTIC- RESEARCH (A730)
NOTICE OF TRANSMIATTAL TO DDC
This tsc!,nica]. report has been reviewed and to
approved fvr public release XAW APR 190-12 (7b)o
Distributtort is utilimited.
A. D. DIA)SE
Tealiial Informstion Off icer

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (16ien Varn Fnte rd)

REPORT DOCUMENTATION PAGE ^IL, IsC, Orns__ Il1IOR L (O(MIPLI TIN G, iO

,,c.] 2 GOVT ACLESSION NO . 'S CATCAIOP. MBRF

FO YALUATING A aATA.&BSTRACTION JESTING
SYSTEM BASED ON FORIMAL SPECIFICATIONS, 6 Interim "/r ,o _

m.NGO .RE P v u I7

7. AUTNORf' B CONTRACT OR GRANT IJUM ER .s!

R u R . l n or l J o h n D / C a n n ol
IF49620-80-C-OOOl]

9- PERFORMING ORGANIZA'ION NAME AND ADDRESS T'- AM LMIJN T TA-S

University of Maryland AREA F WORK UNIT

Department of Computer Science
College Park, Md. 20742 61102F J-A2

II. CONTROLLING OFFICE NAME AND ADDRESS / i 12AlirN ForceN Office of Scientific Research % (//) Decmir l19801

Bolling AFB, Washington, DC 20332 -

3131 _RO_
14. MONITORING AGENCY NAME a ADDRESS(Ht d111relf 1ro- Con0141i11 Oflf URITY CLASS. (of t - p. r

;I

UNCLASS I FI ED
IS. DFCL ASSIi CATT, C*N'- AC'N,", ,

SCHEDULF

16. DISTRIBUTION STATEMENT (o this Repn')

Approve for public release; distribution tnlimited.

17. DISTRIBUTION STATEMENT (of file ahstr-st ent.,,d- i f ft f- r-np.'r

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Contlnue on revere qde if m-..4..rv nod d.,rIt h i kl,, 1.r)

data type, experiment specification, testing.

20 ABSTRACT (Contnia i., re n,- *id l ., a nd f f-1 v hi m-, k -,-, I

A conpi ler-based speci x ication aIxl testing vstem for del'iniilF) d'tI tavpt> I
xen developed. The system, DAISIS, inl'ildes fornmil , lgobr, lic steciticiti ,ns

aixl statement and expression test coverage ,mnitors. This iapllaer descriis
our initial attempt to evaluate the effectiveness of the system errors.. In ;in
exploratory study, subjects without prior experience with DASPS Wre encotiragud
by the system to develop effective sets of test cases for their implcnentat ions
provided valuable hints about additional useful testing metrics.

DD , 1473 EDITION O 1NOV 5iS OR,-LrTF UN(I ASSI A 11,1)

%F..... T Y CL .S5F ATION n 1 m%..i PArV.I l Y -'

1. Introduction

Program development remains an error-prone process.

Specifications are often ambiguous or incomplete, and validation

of a program's conformance to its specification by testing is

often performed by humans who agree too readily with the output

of the test program and who have little feet for how thoroughly

the specification or program has been tested. These problems are

magnified during the Later stages of the software Life cycle.

Since specifications, programs and test data are usually separate

entities, each can be altered without regard to the others.

Furthermore, test data collected because it exposes a particular

error is theoretically useless as soon as the error it exposes is

corrected.

Program testing systems have been developed that compare

user-supplied and program-computed input-output pairs, and

measure several program coverage criteria (e.g., statements,

paths, expression values, etc.) (Hamiet '87. These input-output

pairs can be difficult to write for complex functions (e.g., the

result of adding a single identifier to a hash-coded symbol

table), and when an error is detected, the user-supplied pair is

often as suspect as the computed one. Testing systems whose

criteria for test oata selection involve only program structure

are too weak to reveal all design errors and many types of

construction errors EGoodenough and Gerhart 75].

we have combined recent work in data abstraction

specification and modularizatlon with a program testing system in

an attempt to ease program deveLopment. DArSTS (Data Abstraction

imptementation, 1pecification, and Testing lystem)

CGannont et at. 80] combines a data abstraction Language

containing SIMULA-Like classes Coaht, et at. 68) and algebraic

specifications similar to those of CGuttaq 773 with a Library of

test monitoring routines. With user-supplieu test sets, the

axioms of the specification are used as driver Programs for the

2

implementation. Structural testing Criteria are applied to both

axioms and code to evaluate the test data. We feel DAISTS has

several advantages over conventional program development systems:

1) The specification, program, and test 4ata arepackaged as a single entity, encouraging their mutual

maintenance.

2) The specification Language is apolicative and the
implementation Language is imperative. We hope that this
ortho~gnaLity wiLl reduce the Liktihood of the same error
appearing in both the specification and the implementation.

3) The test data coverage of the specification and the
program are measured.

4) There is no need to describe the concrete
representation produced by an operation; the user
(specifies and) writes an equality routine to judge the
results of tests for abstract objects. This simplifies the
testing process by removing the requirement for 'hand
simulation of compLicated operations.

5) Having a tool that incorporates specifications into
the development process should provide the motivation and
experience necessary for programmers to use formaL
specifications effectively.

The construction of every software toot should include an

evaluation of its effectiveness. The evaluation can be used to

convince users of a system's worth and can also provide useful

information to the designers about its shortcomings. This paper

describes an exploratory study that compared program development

with DAISTS against more conventional Programming techniques. We

felt that structure imoosed on the programming process by DAISTS

would aid programmers in constructing programs containing fewer

delivered errors, but were concerned about program development

costs and the ability of users to adapt to DAISTS.

Accession For
T'S CA&I

"TTC TAB
11 rrriounceO

vA)1,3ability Coces
, ;Av:iII and/or

; lut special

Jt

3.

2. DAISTS

A program submitted to DAISTS contains an impLementation of

an abstract data type written in the high Level Language SIMPL-D

EGannon and Rosenberg 793, a coLlection of algebraic axioms

describing the type, and a coLlection of test cases.

2.1. Implementation Language

SIMPL-O SIA 11 decLarations define new types which may

subsequently be used in object declarations. The interior of a

class is a series of variable declarations (the representation)

followed by a series of procedure declarations (the body).

Including the names of procedures in the class heaping makes the

procedures visible outside the cla l. The appearance of the

reserved word alligq in the operation List enables the assignment

operation (:=) to be applied to objects of this illjj type.

When a unit of scope containing the declaration of a

object is executed, a new copy of the c1111 object is allocated

and initialized. Users generally view £IC1! objects as

indivisible entities; the components of cjAjl objects cannot be

accessed outside of its cla declaration. Inside the £i!f1,

these oojects may be viewed as structures containing more

primitive objects. Statements in the body of a 11.1 can access

the Wniiqg components of a 1I1 object using a period notation

similar to that of PL/I or Pascal.

A fragment of an implementation for bounded Lists of

integers is shown below. Each List object is represented by a

boolean variable (Empty) indicating whether or not the list is

empty, an array of integers (Values) holding the values currently

in the List, and integer indices (Head and Tail) into the array

identifying the first and last elements.

¢Lis List NewListt AddFirst, DeteteFirstt DeleteLast,
LiStLength, so., lign

/* The representation *1

f ' - ListSize - 11"

WuaiQui H Artir Vatues(ListSize)
I* The operations */

List fpn NewList /* returns List with no eLements *1Lis' esut
ResuLt.Empty :
re t lrn (Resu Lt)

List fVn s DeLeteFirst(LiSt X) /* returns Tai(X) '/Lii -esut
Pesutt := X
if ResuLt.Empty gr ResuLt.Head 2 ResuLt.TaiI
-- hen i* List contains zero or one element *1

"Veturn(NewList)
i ement mead moduto ListSize .I

2f ResuLt..ead <) ListSize - 1
then
"---esutt.Head := ResuLtoHead * 1
e1.e I* circularize to zero origin *1

lesult.Head :0en t,

Ln. CO(Result)

S

2.2. Specification Language

The specification Language for DAISTS is similar to that

described in [Guttag et aL. 781. The primitives of the Language

include boolean and integer constants, free variables, equaltity,
other booLean and integer operators, and functional composition.

Axioms equate two expressions; the first exoression is generally

a function composition and the seconO expression is a combination

of primitives and conditional expressions Like those of ALGOL 60.

Each axiom presented to the DAISTS processor is named and has a

List of the names and types of the free variables used in the

axiom. The axioms for the bounded list operation DeleteFirst

might Look Like:

S

A x i

DeleteFirstl:
DeteteFirst(NewList) a NewList;

DeleteFirst2(List AxListl INT Axintl):
DeLeteFirst CAddFirstlAxList1 ,Axjntl))-j_ ListLength(AxListl) = 11

then DeteteLast(AxListl)I AxListl;

The axiom DeteteFirstl specifies that deleting the first

element in an empty List results in an empty List. DeteteFirst2

specifies that the result of deleting the first eLement from a

List to which an element had been added at the head is the same

as either: 1) deleting the Last element from the original List if

the original List was full (because adding an element to the

front of a full List caused the last element to be discarded), or

2) the original List if the original List was not full (i.e., the

element just added was the one deleted).

2.3. Test Data

The testoinIs section of a DAISTS program Looks Like a

procedure, complete with declarations and executable statements.

This section allows users to build objects to be referenced in

the subsequent tIIsIseJI section of the program. An object that

is expensive to construct can thus be used in testing several

axioms without repeating its construction.

The e1111te section of the program contains a List of axiom

names with values to be substituted for the free variables of the

axioms. Sample .e.s i ns and IesIsts sections for bounded

Lists of integers are shown belo.

6

LC112icnf

CTst PI,P2

P1 : AodFirst(AddFirst(NewList,3),4)
P2 = ewList /* Initialize P2 to be empty *1
I : 0

wieI < 11
2 P2 :AddLast(P2,I) I* FitL P2 up' */
I +~I

DeLeteFirst2: (NewList,3), (P1,5), (P2,7),
(Conc(Pl ,P2) ,44);

In the jt211Point section, the two lists P1 and P2 are

constructed; P1 is (3, 4) and P2 is (0, 1, ... , 10). In the

tEstses section, test data pairs are provided for the axiom

DeLeteFirst2. Since the axiom DeLeteFirstl has no free

variables, no input data can be supplied for it, and DAISTS wilt

generate one test to see if the implementation holds for it. The

four pairs of test data for DeleteFirst? cause OAISTS to generate

tests for this axiom first with AxListl instantiated as NewList

and AxIntl as 3, then with AxListl as P1 and AxIntl as St etc.

For each test set, the implementation is used to evaluate the

Left hand side of the axiom, and then again to evaluate the right

hand side of the axiom, and then the two values are compared

using the standard eouaLity operatoi for basic types of tse

Language and a user-supplier equality operation for the abstract

types. An error message is generated if the two sides do not

acree. A restriction placed on the implementations for DAISTS

(hut not inherent in SIMPL-D) is that the abstract operations

have to be functions without side effects so that the two

evaluations in an axiom do not modify the test set elements.

2.4. Run-time Monitors

DAISTS also generates code to monitor statement and

expression execution at run time. ALl statements in the

implementation and all parts of the axioms must be executed to

7

have a successful test. Furthermoret aLL expressions in the

statements and axioms must take on more than one vdtue;

user-suppLied equaLity operations are used by the system to

determine if objects with user-defined types change values.

unexecuted statements or axiom fragments, and constant expression

values indicate that either simpler programs or statements can be

written or more test data needs to be added to justify the

program's compLexity.

3. Methodology

3.1. Overview

we hypothesized that testing with formal specifications

would reduce the number of delivered errors without increasing

the cost of program development. To test our hypotheses, we

conducted an experiment where an intermediate class in

programming languages was divided into two groups, given

identical English Language descriptions of the abstract type

'List-of-integers', and assigned to produce implementations of

the type in (the same) high level Language. One of the groups

use4- algebraic specifications to test and debug their

implementations, and the other group used the more traditional

debugging method of test Programs. The axiom group was supplied

with the axioms for the type; the control group was supplied with

a test driver that used the abstract operations to sort groups of

integers and were allowed to produce other test drivers at their

discretion. Both groups had to develop their own test data. At

the end of the experiment, we examined the projects that were

turned in to discover resioual errors.

There are several design decisions that Leo us to this

particular experiment. In evaluating DAISTS there are really two

issues to be resolved: the ease with which users could write

axioms and the ability of users to develop programs from the

axioms. Given the relative inexperience of our subjects

(primarily soohmores and juniors), we concentrated on program

development rather than specification development hoping to

justify a Later, more complex experiment with more sophisticated

subjects. Obviously, if the program development task proved too

difficult, the system's worth would be questioned because writing

formal specifications before development would only make the

process more difficult, Another problem concerned the materials

to be given to the subjects. Providing the axioms to one group

9

and requiring the control group to devise their own testing

programs seemed to make the control group's task more time

consuming. Thus, we decided to Provide the control group with a

test routine (the sort program), which tested nine of the twelve

List operations. Since some subjects would undoubtedly test with

only the sort routine while others would write their own test

drivers (at Least for the three untested functions), we wouLd be

able to get more detailed information about the behavior of the

control group.

3.2. Choosing the groups

The class (of 79 students) met together for Lecture twice a

week, and was divided into four smaller oroups that met once a

week with one of two teaching assistants. Two of the small

groups (one from each assistant) were combined to form the axiom

group (45 students), and the other two groups formed the control

group (34 students). Five of the control group students, and

four of the axiom group students did not turn in any project, and

were dropped from the study. Two more of the control group

studentst and one of the axiom group students were dropped

because their projects aid not appear to oe independently

developed. Despite the fact that the students were warned

several times that every compilation was being recorded and that

they were required to work independently, three pairs of projects

are so (remarkably) similar that we could not objectively

consider them to be independent efforts (either they started from

decks that were equivaLent, and were jointly deveLocec, or one

deck started 'development' after the other was completed, with

'development' consisting of a uniform substitution of names and

reoroerino of code segments). One of each pair of the

"non-indeoendent' projects (the 'dependent' one if determinable)

has been omitted. This Left 4n students in the axiom group, and

27 students in the control group.

10

Analysis of the grades that they received for the semester

showeo only one statistically significant difference between the

two groups - the control group had slightly higher examination

scores. (See Table 0 below.)

Table 0 Group Differences.

Axiom Group Control Group

Letter grade MeanZZZZ - - - -- . ------
St dev .90 .94
LeveL < 80%

Project grade Mean 120.8 1 114.1
St dev 17.8 I Z6.8
Level < 44%

Exam Grade Mean 41.00 45.81
St dev 12.12 I0.90
Level < 7%

Letter grades on a scale 1=D, 2=C, etc.

Project grades (five projects not counting experiment)

on a 150 point scaLe.

Composite exam grades on a 110 point scale.

Significance Levels for a two-taiLed test.

3.3. The Project

This was the first exposure to rencapsulated types' for

nearly all of the students in the cLass, so we chose to assiqn a

rather small project (approximatLy 150 Lines) to implement

'bounded List-of-integers.0 ALL of the operations on Lists were

described in English in the project handout (see Appendix I),

which also contained instructions for using the appropriate

processor. The subjects were told that they were to implement

all of th! functions described in the handout ano present results

demonstrating that the sort routine or axioms executed with no

obvious errors.

11

A manual describing the implementation Language and giving

other specific information (using the axioms for the axiom group

members, writing driver programs for the control group) was also

distributed. The axioms and the test driver program that were

provided are in Appendices II and III respectively.

Since the test data had to be submitted along with the

program at compiLation for the axiom group (to allow DAISTS to

generate its test driver), we felt that the control group should

also be required to submit their test data with their compilation

reouests to make the development environments more nearly

ecuivaLent.

we also provided separate lecture and tab meetings for the

two groups, and tried to exchange experimenters so that each

group met with each experimenter to nuLlify any bias our lectures

could be giving. The students were informed that they had been

divided into two grouos, and were asked not to exchange

information about how the two groups were different. However,

since the abstract type that they were implementing was the same

for both oroups, some of the details of the implementation

Language were discussed with both groups present.

3.4. Data CoLLection

A special processor was set up to Limit access to DAISTS -

it did not aLlow members of the axiom group to write separate

test drivers, and it did not allow the members of the control

group to use the axioms. This processor also saved a copy of a

every deck submitted. DAISTS was hidden so that the students

were forced to go through the processor (so that aLL submissions

could be recorded), and the students were told that their decks

were being coLlected. This approach led to a number of identical

decks being saved by the submission processor - a student would

run a deck at his terminal and then run the deck again to

generate a Listing on the printer, or proarams fdiLed to complete

evecution before their system default time limit was exhausted so

12

the necks were resubmitted with Larger time Limits.

3.5. Identifying errors

After aLL of the students' projects were coLLected and

graded, the files of decks were examined. For each student, the

deck that corresponded to the Listing that was turned in was

separated into the class definition and the debugging data. We

then debugged each implementation, both by "desk Checking" and by

using the DAISTS system, with a Large variety of data points for

each axiom. Many of the errors that we found were detected by

turning on the subscript-checking feature of the compiler -

apparently very few of the students used this feature.

As we were debugqing their implementations, we found that

several student's implementations had 'subjective restrictions'

that were not clearLy specified in the project assignment. These
Isubjective restrictionso could be interpreted as errors, but a

case could be made for aLtowing them as correct restrictions.

One student stored only singLe-digit positive inteiers. Several

students could correctly store any integers except zero, which

they used as markers in their representations.

When these Osubjective errors' were counted, the results

were not substantially different from the results reported below,

which come from only counting the Oobjective errorso - code that

fails no matter how favorable the input values selected.

3.6. Measuring errors

we also faced a dilemma in chosing which errors to count,

and how to report them. we feet that the most conservative

objective measure that we can use is 11Oj2i C2011ining trr2r1_

If a function in the suomitted project had to be changed,

regardless of the number of changes that had to be made to

correct the function, it was counted as a single 'function

containing an error.o we like the resolution of this measure,

13

because 1) it is more nearly representation-independent than any

error measure that is influenced by the structure of the code of

the implementation, and 2) the project description defined

functions, the axioms specified functions, and the sort routine

used the specified functions.

we compared our measure to that of [Gannon 772 who reported

dilixnt CLEMi and errg 2 1rC.Mitn where (for example) if the

* same error in computing the Length of a List was made in three

places, it would count as one distinct error, but three error

occurrences. Our data produced similar results for both of these

measures and for the measure 'functions containing errors.'

Several of the students made errors in the selection of

their representations. One student used a circular List and had

an ambiguity in his representation so that a fulL list was not

distinguishable from an empty one. This error could only be

fixed by adding a word to his representation and repairing many

of the functions. Another student's project was corrected by

merely changing the size of an array in his representation (no

functions needed changing). These decks were charged with one

incorrect function to account for the change to the

representation (in addition to the incorrect functions that they

were charqed).

In the results reported below, the measure fu!ctions t!a

cQQ1AiQ 2tiflIic trrgCI was used.

3.7. Measuring Cost of Development

It is inherently difficult to measure orogrammer effort. it

is especiaLly difficult to measure effort of students who do not

work regular schedules and who are not inclined to keep track of

efforts on a project near the end of a semester. Since the only

enforcabLe metric which we Could employ was the number of runs

submitted, and since the previously mentioned duplicated decks

involved none of the debugging effort which we were tryino to

measure, the most convenient and consistent measure that we can

14

use is Ov f 21 9ilsi- l rali.

3.8. StatisticaL techniques

we chose to use the Mann-whitney U-test ESiegeL 563 for

doing the anatysis of the data from our experiment. The

Mann-Whitney U-test is non-parametric, and our data is (at best)

an ordinaL measure of performance. Parametric tests aLso require

that the sampLes be drawn *rom an uniform distribution, which we

cannot guarantee for our data.

15

4. Results

We report the data both for the subgroups that successfully

Completed the project and tor the entire groups, 3y successfuLly

completing the project, we mean only that the output of the

program that was submitted for grading displayed no obvious

errors. Many of the students turned in projects that they knew

were not correct - students in the axiom Grouo had error messages

complaining about inconsistent axioms, and students in the

control group turned in projects for which the sort routine would

not correctly sort the inteqers that they used to demonstrate

that their orograms worked. In the axiom group, 32 out of 40 who

turned in the project successfully completed it, and in the

control group 22 out ef 27 were successful.

we have subdivided the successful controL group into two

groups for further comparison: one that wrote and ran small test

driver programs in addition to running the sort proqram (which is

more Like an integration test than a driver), and another group

that used the sort routine exclusively for testing. Of the 22

successful control group members, 7 wrote their own driver

programl,

Since the sort program tested 9 of the 12 List operations,

we have reported both the number of incorrect functions tested by

the sort routine and the total number of incorrect functions.

The subjects were required to implement all the functions and

were encouraged to write extra functions to display list objects

as a debugging aid.

In the tables below, we report the means and standard

deviations (following the means in parentheses) of the number of

incorrect functions tested by both the axioms and the sort

routine, the total number of incorrect functions, and the number

of distinct runs.

16

4.1. ALL Subjects

ALL subjects in both groups had similar numoers of incorrect

functions tested by the sort routine and distinct runs. dhile

the means favored the members of the axiom group (an average of

.18 fewer incorrect functions out of the 9 functions tested by

the sort routine and .71 fewer distinct runs), the differences

were not significant. As expected, the axiom group did

significantLy better than the control group in eLiminating errors

in aL the functions.

Table I ALL Axiom (40) and ControL (27) Subjects

Axiom group Sort group Level

Incorrect sort functions .60(1.18) .:78(1.64)
ALL incorrect functions .82(1.51) 1.78 (2. 0) .003%
Distinct runs 11.77(5.65) 12.48(8.53)

4.2. Successful Subjects

when we consioer onLy those students who successfuLly

compLeted the project, the axiom group did marginaLty better than

the control group Pven on the functions tested by the sort

routine. This result appears despite the fact that the sort

routine did do a fairly good job of exposing the errors in these

routines for those subjects choosing good sets of data to use

with it (in the sense that when data for the sort prooram

containea all of the boundary cases of the sort routinet all of

the boundary cases of the list functions were tested). Of

course, the results are even more striking when we consider aLL

functions that were assigned. The axio, group delivered more

correct functions than did the control group whiLe taking fewer

runs.

17

TabLe 11 SuccessfuL Axiom (32) and Control (j2) Subjects

Axiom grouo Sort group LeveL

Incorrect sort functions .12(.33) 23(:.46) <20Z
AlL incorrect functions *19(.39) 123(1.2) <o001
Distinct runs 10.97(5.60) 11.41(7.60)

4.3'. Subjects Writing Their Own Drivers

We expected that those subjects in the control group who

wrote driver programs in addition to using the sort routine would

test as effectiveLy as the axiom group, but wouLd require more

runs to oebug their own drivers. The data in TaoLe III supports

these hypotheses, except when we consider aLL the functions

assigned. Even those subjects writing their own driver programs

did not produce as many correct functions as the axiom grouo did.

TabLe III Successful Axiom (32) and
Driver-Writing (7) Subjects

Axiom group Driver group LeveL

Incorrect sort functions .12(.33) .14(.35)
ALL incorrect functions .1Q(.39) .57(.49) <2%
Distinct runs 10.97(5.60) 15.14(5.82) <4Z

Examining the runs of the driver-writing subjects to

determine why their efforts did not match those of the axiom

group, we find a distinct Lack of testing disciptine. Five of

the 7 subjects had test drivers that could exercise all the

functions (one subject missed one function and the other subject

missed two). Four of the subjects used effective testst trying a

variety of objects in different operations, while while two other

subjects with extensive test drivers just did not seem to use

enough data to cover the necessary cases. Four of the subjects

used drivers before using the sort routine seriously as an

integration test. (I.e., they may have used it to compile their

imptementations initialLy, but did not try to debug using it.)

Two other Subjects used drivers only in response to specific

errors that occurred in debugging with the sort routine.

4.4* Subjects Testing with the Sort Program Onty

Those subjects testing only with the sort program used an

average of 1.3 fewer runs than did the members of the axiom

group, but the axiom groupt but did not produce as many working

functions even when we consider only the functions tested by the

sort program (8.73 to 8.aS). Part of the explanation for this

result may be that the sort proaram €id not encourage the members

of the control qrouo to test more thoroughly. The sort program s

effectiveness as a testing vehicle was impaired by poor

selections of test data that did not include the ooundary cases

of the sort's domain (e.g., empty lists, lists with duplicate

memberst etc.).

TabLe TV Successful Axiom (32) and
Sort-Only (15) Subjects

Axiom group Sort grouo Level

Incorrect sort functions .1?(.33) .27(.44) <14%
All incorrect functions C19(.39) 1.53(,.31) (.02%
Distinct runs 10:9?(S.60) 9.67(7.70) <

19

5. Conclusions

We have shown that DAISTS can encourage even inexperienced

users to develop effective tests for their implementations.

Those subjects who used only the sort program to test their

implementations stopped testing too soon because the data they

fed the sort program did not expose errors in their List

implementations. The axiom group needed more runs to satisfy

DAISTS, out correctly developed more of the functions used by the

sort program.

The discipline of testing with DAISTS can help users avoid

Less systematic testing methods. Even if we consider only the

subjects in our study who wrote their own test drivers, we

observe a variety of ouestionaOte testing practices - omitted

functions, failures to consider boundary cases, and generally

insufficient test data. The formal specification required by

DAISTS identifies the boundary cases and clearly defines their

treatment. Furthermore, DAZSTS run-time monitoring routines

ensure that the code hanoling boundary cases is exercised.

Performing this type of study can also give us insights that

help us improve our system. We were frustrated by the ambiguity

that the students read into our careful English descriptions (the

"subjective errors" that we identified - single digit integers,

usinq zero for a marker, etc.), but such imprecision is inherent

in informal specifications. Even including format specifications

for the subtypes used in building the new type does not prevent

the omission of test data that exposes the confusion. We feel

that DAISTS-Like systems might expose these errors with

speciaL-values testing strategies. [Howden 78), e.g., adding test

sets that include the constant functions of the subtypes (0 for

mis, null and blank strings, NewList, EmptyStack, etc.) and the

constants of the subtypes that aopear in the text of the

irptementation.

20

This experiment did not evaluate the subject's ability to

write specifications. WhiLp many programmers might have

difficulty producing axioms without training, we feet that this

fact does not render the tool useless. Our own experience in

teaching programmers to write algebraic axioms Leads us to

conclude that they are not as cumbersome as many believe.

Another experiment is needed to test the validity of this

hypothesis.

The computer science community has reached a consensus on

the desirability of requirements analysis and format

scecifications. Having a toot which can incorporate

specifications into the development process will Provide the

motivation and experience necessary to use them. writing format

specifications need not oe considered overhead if they can reduce

the effort needed to write and debug test driver programs.

21

6. Acknowtegments

This research was supported by the Air Force Office of

Scientific Research (Contract F49620-10-C-0001). Computer

support was provided by the University of Marytand Computer

Science Center. We would a(so tike to thank Dr Richard HamLet

and Dr Mark Ardis for their contributions to the oevetopment of

DAISTSo

22

L

7. aibtiography

[DahI, et at. 68)
O.-J. Dahl, B. Myhrhaug, and K. Nygaard: "The SIMULA 67
Common Base Language Norwegian Computing Centre,
Forskningsveien 18, Os70 3, 1968.

[Gannon & Rosenberg 79)
John D. Gannon and Jon Rosenberg: "Implementing Data
Abstraction Features in a Stack-based La°nuaoar. Software
Practice and Experience, vol 9, pp 547-560, 1979.

[Gannon 773
John D. Gannon: "An Experimental Evaluation of Data Type
Conventions", CACM, vot 20, no 8, pO 584-595, August, 1977.

[Gannon, et at. 803
John D. Gannon, Paul R. vcuttLn, and Richard G. Hamlet:
"Data AOstraction Imptementation, 5pecification, and
Testinq", (submitted for pubtication), 1980.

[Goodenough & Gerhart 75)
John B. Goodenough and Susan L, Gerhart: "Towara a Theory
of Test Data Setection"• IEEE TSE• voL SE-I no 2, pp
156-173, June, 1975.

[Cuttag 77)
John V. Guttag: "Abstract Data Types and the Development of
Data Structures", CACM, vot 20, no 6, op 396-404, June,
1977.

[Guttag et al. 78)
John V. Guttag, ELlis Horowitz, and David R. Musser:
"Abstract Data Types and Software validation", CACM, voL
21, no 12, pp 1048-1064, December, 1970.

[Hamlet 78]
Richard G. Hamlet: "Testing Programs with the Aid of a
CompiLer", IEEE TSE, vot SE-39 no 4, pp 279-289, July,1978.

[Howden 7p]William E. Howden: "An Evaluation of the Effectiveness of

SymboLic Testing".Software - Practice and Experience, vot
8, pp 381-397, 1 7.

[Siegel 56).
Sidney Siegel: 2
S ~j j lt, McGra--R!itt N eW T or l O.

23

Appendix I - first page of handout

You are to write the CLASS implementation for Lists of
integers. A List is an ordered collection of elements which may
have elements added and deleted at its ands, but not in its
middle. The operations that you must "export" are: AddFirst,
AddLast, Cone, DeteteFirst, DeLeteLast, First, IsEmoty,
ListEquaL, LiStLength, NewList, and Reverse. Each operation is
described in detail below.

The Lists are to contain up to eleven (11) elements. If an
element is added to the front of a "full" List (one containing
eleven elements already), the element at the back of the list is
to be discarded. Elements to be added to the back of a full List
are discarded. Requests to aelete elements from empty Lists
result in empty Lists, and requests for the first element of an
empty list results in zero (0).

Remember that the operations that you implement are to be
functions and that they may ***NOT*** change their parameters!
If a function needs to manipulate a parameter to perform the
operation, the parameter is to be COPIED to a LOCAL variable
BEFORE the change is performed! You may use any representation
you choose to implement your lists. The detaiLed operation
descriptions are below:

List FUNC Addfirst(List LINT I) - Returns the list with I as
its first element followed by all of the elements of L. If
L is "full" to start, L's last element is ignored.

List FUNC Addlast(List LINT I) - Returns the List with all of
the elements of L followed by I. If L is full to start, I
is ignored.

List FUNC Conc(List L1,List L2) - Returns the list made uP of
the elements of List Llfollowed by the elements of L2. if
Li and L2 together contain more than eleven (11) elements,
then the extras are to be ignored.

List FUNC Deletefirst(List L) - Returns the list containinq
all but the first element of L. If L is empty, then it
returns an empty List.

List FUNC DeLetetast(List L) - Returns the list containing all
but the Last element of L. If L is empty, then it returns
an empty List.

INT FUNC First(List L) - Peturns the first element in L. I# L
is empty, then it returns zero (0).

INT FUNC Isempty(List L) - Returns one (1) if L is empty, zero
(0) otherwise.

INT FUNC Listequal(List L1,List L2) - Returns one (1) if the
two Lists are element for element equivalent (e.g.
First(L1) = First(L2),...), and zero (0) otherwise. Note
that two empty Lists are considered equal.

INT FUNC ListLeng th(List L) - Returns the count of elements in

L. An empty ?ist has a count of zero (0) elements.

LiSt FUNC NewList - Returns a List initialized to be empty

List FUNC Reverse(List Li) - Returns a list containing the
elements of Li in reverse order.

24

Apperi'x I - second Page of assignment for control group

A .est routine has been written for you, or you. may write
Xour own test routines. The provided routine reads in groups of
integers, sorts them, ana prints out the smaLLest 11 of each
group. The test routine expects the groups of integers to be
separatea by zero. A sample test run usini the proviaed test
routine is shown beLow:

@add simoLd*project.setup <done once per run>

P$.SIMPLDS <caLls the compiler,

asks for Listing)

<List implementation> <your CLASS for Lists>
STEST <causes the test routine

to be provided>
<groups of integers, separated by zeros)
aeof <end of the data>

The data for the test routine may have any number of integers or
groups of integers per card, with the integer 0 separating each
group. Snaces are used to separate the integers when more than
one nteger is on a card.

A sample run for using your own test routine is shown below:

@$.SIMPLDS <caLl compiler as above,
assuming setup is done>

<List imonementation>
<your test driver>
SDATA
<your data>
@eof

You wiLL be required to submit your list implementation via
the aeck submission processor (to be discussed in cLass), and you
wiLl also turn in a Listing of a run using the provided test
routine, that shows several groups of integers correctly sorted.

25

Appendix I - second page of assignment for auiom group

Axiops have been written which you must use to debug your
CLASS. You may add axioms of your own at your discretion. A
sample run is shown beLow:

@add simoLd*project.setuo <done once Per run>

@$.SIMPLD,S <calls compiler, asks
for listino>

<List implementation> <your CLASS for Lists>
SAXIOMS <causes axioms to be provided>
<your optional axioms>
TESTPOINTS
<your testpoints>
TESTSETS
<your testsets>
START
@eof <that's all you need>

You will be required to submit your list implementation via
the deck submission processor (to be discussed in class), and you
will also turn in a Listing of a run using the provided axioms,
with no axiom failures and a LL statements executed.

26

Appendix II The Axioms suppLied to the axiom group

aliornj

/* These axioms are constructeo foLtowing the Guttag
rules for deciding which axioms need to be constructed.
The functions in the "0" group are:

Is~mPty, ListEauatl ListLength, First
The functions in the "fii roup are:

Ne wList, AddFirtt
The fnctions in the "TOIZ" group are:

AddLast, DeLeteLast, DeteteFirst, Conc, Reverse

I sEmptyl:
IsEmptyCNewList) = 1;

IsEmpty2CList AxListl,int AxInti):
IsEmpty(AddFirst(Ax[I:Tstl,Axintl)) =0;

L istEquaLl:
ListEquat(NewList#NewList) =1;

Listkcquat2(List AxListl,int AxInt):
ListEquatCNewList ,AddFirSt(AxListl,Axjntl)) =0;

ListEnuaL3 (List AxListl ,iflt AxInti):
ListEquaL CAddFirst (Axitl ,AxIntl),NewList) =3

ListEquaLA(List AxListlList AxList2,int AxIntl 'int Axlnt2):
ListEquat(AddFirst (AxList1,AxIntl1)1adFirstCAtilst2Axlnt2))

if AxIntl <> Axlnt2
Ihe 0

TY-ListI ength(AxLiStl) =11
te * Need to trim the end of f'*

t'TitEquaL(DeteteLast(AxLiStl),DeteteLast(AxList2))
else /* Compare themi just as they are! *
[TitEquaL(AxList1,AxList2);

L istLengthl :
ListLength(NewList) = 0;

ListLength2(List AxListlvirfl Axlnti):
ListLength(AddFirst(Axitl ,Axlntl))

if ListLength(AxListl) =11
~then 11
111 1 + ListLeflgth(AxListl);

F i rs tl1:
First(NewList) = 0;

First(AddFirstCAx LiStl,AxIntl)) =Axlnti;

/* Now for the "T012" function definitions: *

Addasti~int Axlntl):
AddLasfTF;ewList,AxIntl) =AddFirst(NewListpAxintl);

AddLast2(ist AxListlvint Axlntlti?! AxInt2):
AddLast(AadFirst(AxCTstl ,AxlntTTAxlnt2)=

AddFirst(CAddLas t(AxListl,A xlnt2) ,Ax Intl);

DeteteLasti :
DeLeteLastCNewList) = NewList;

DeteteLast2(List AxListiati Ax Inti):
DeLeteLastCAddFirst(AxC ist 1 Axlntl))

27

Appendix II The Axioms supptied to the axiom group

if IsEmpty(AxListl)
-- hen NewList

ellj AdjdFi rst (DeteteLastCAxListl),Axlntl);

DeleteFirsti:
DeLeteFirstCNewLiSt) =NewList;

DeteteFirst2(LiSt AxList1,int Axinti):
DeLeteFirst (AddFi rst (Ax[Tst 1l4 Ax IntlI))

if ListLength(AxListl) =1
~tht~n DeLeteLast(AxListl)

Conci (List AxLiStl):
Conc(NewList,AxListl) =AxListl;

Conc2(List 4xListl,List AxList2 mnt AxIntl):
ConcCAddFirst (AxListlI AxIntlS;x;List2) =

AdoFirst CConc(AxListl,AxList2),Axlntl);

Reversel:
ReverseCNewList) =NewList;

Reverse2(List AxListlvinl AxInl):
Reverse(AddFirstCAx[Tsti AxInti))

if ListLength(AxListl5 11
1"hen AddLast(Reverse(DeteteLast(AxLilt1)),A x nti)

28

Appendix III The sort routine given to the control group

1r2C main /* The driver for the sort program to test Lists. *1

/* Read in 3 series of numbers that ends with zero, sort them, 1
!* and then print Out the smallest ListSize of them. */

int HoLder /* A pLace to read numbers into *1
VnT Setnumber /* The numoer of the current set */
TAT Counter /* A counter of the number of numbers in Unsorted *1
Lt Unsorted /* Where the unsorted numbers are read into .1
List Sorted /* Where the sorted numbers are stored! */

I* main Loop for reading in sets of numbers '/

Setnumber 1 I* Start to work on the first set *1
S11he .nll . e2i J2

rSoted NewList /* No sorted numbers in tnis group 'I
Unsorted NewList /* Also no unsorted numoers in yet! .1
rgd(Hoider) /* To initialize HoLder! *: 2tP HoLder <> C .ano.Hie.... ol. ei o "- Keep reading and sortinq */

Counter r /* Set to count the unsorted List '1
htile HoLder <> .and.

Counter < ListSTe *and. not* eoi do
Unsorted AadFirstTORsorfilHarte7l
Counter - Counter * 1
read(moLder) /* Get the next number of the set *I

/* Either Unsorted is fuLl, or this set is finished' !I
/* Must first join unsorted numbers with sorted ones */

Sorted := Merge(SortedSort(Unsorted))
end

/* here we must have hit an end of a set! */
/* Print out the first "ListSize" worth of numbers *I

wriie(jkio,'Sorted numbers of set number'tSetnumber)
e*n! . isEmpty(Sorted) do
wrTV(FirstCSorted)) /*C1tput smallest number in set*/

flid := DeleteFirst(Sorted)
end

SeVi5mber := Setnumber + 1 i* Now start the next set *!

Zr (sk ip.Dtkp,'Out of sets of numbers to sort')

List t.n. Merge(List MlinList M2in) I*qerges two sorted Lists*/

List Result
List Mlt2 I* LocaLs so that we do not change the parameters! 'I

M1 = Mlin I* Copy parameter */
M2 :M ain /* Copy secono parameter too! */
ResuLt := NewList

wthlt,: in (IsEmpty(1).;2t. IsEmpty(,2))
2 ne when one is empty */

if First(M1) <= First(C2)
"-nen /* Take next value from M1 */

R'esult := AddFirst(Result,First(Ml))
M1 :- DeteteFirst(CM) /* Don t need first number */
111 I Take from t02! */
esuLt : AddFirst(ResuLt ,First (m))

M2 := DeleteFirst(m2) /* Discard first after copyinq '/

/*One of the two Lists is empty - catenate them aLL together!*/

£ _1ur!(Conc(Reverse(Resutt),Conc(ll,m2))) Iand reorder ResuLt'*/

29

Appendix III The sort routine given to the controL group

r List fWD SortCList Intist) /*Sorts into increasing order*/
i* This procedure works by a m erge sort - Split the List in */1' two, sort each haLf, and then merge the two sorted haLfs! *1

List Natt1,HaLf2

HaLfi : NewList I* Initiatize' '
Ha~f2 :~Intist I' Initiatize' '
xhill ListLength(HaLfl) < ListLength(Hatf2) g2Hotf I AddFirs't(Hajfl([12) at2)

Ha~f2 :zDetete irst Haf2)tC~~t
end

,cr-nQmergeCSortCHaLf1),Sort(HaL2))

30

A.MI
ILMI

